Zum Inhalt

TU-Chemiker veröffentlichen aktuelle Erkenntnisse in „Science“

-
in
  • Neues aus der Fakultät 2024
Bitte Bildnachweis einfügen

Prof. Max Martin Hansmann von der Fakultät für Chemie und Chemische Biologie und sein Team haben ein neues Reagenz entwickelt, mit dem Kohlenstoffatome in organische Moleküle eingefügt werden können. Diese Ent­wick­lung ist für die Grundlagenforschung der organischen Chemie so spektakulär, dass sie in der renommierten Fachzeitschrift „Science“ veröffentlicht wurde. Die Forschungsarbeiten fanden im Rahmen eines ERC Starting Grants statt, den Prof. Hansmann 2022 eingeworben hatte. Der Erstautor der Pub­li­ka­tion, Dr. Taichi Koike, ist über ein Alexander von Humboldt-Forschungsstipendium am Lehrstuhl für Organische Chemie von Prof. Hansmann tätig.

„Die präzise Veränderung von Mo­le­kü­len auf der Ebene eines einzelnen Atoms zählt zu einer der elegantesten Transformationen in der organischen Chemie“, sagt Prof. Hansmann. Sie ist für Forschende interessant, da sie den Zugang zu komplexen Arzneimitteln in einer kürzeren Synthesesequenz ermöglichen kann. Die Ent­wick­lung von Reagenzien, die selektiv ein Kohlenstoffatom einführen können, stellt jedoch eine schwierige Aufgabe dar. Dem Team um Prof. Max Hansmann ist es nun gelungen, ein Reagenz zu synthetisieren, das nicht nur als Kohlenstoffatom-Quelle, sondern auch als Mehrzweck-Transferreagenz dienen kann. „Wir sind zuversichtlich, dass die weitere Er­for­schung der Reaktivität dieser Art von Reagenzien neue Anwendungen im gezielten Transfer von Kohlenstoffatomen ermöglichen wird, zum Beispiel als neues Reagenz beim Zugang zu höheren Cumulenen oder bei der späten Manipulation von komplexen molekularen Strukturen“, sagt der Chemieprofessor.

Bei der Ent­wick­lung machte sich das Team einen einfachen Ansatz zur Stabilisierung eines Kohlenstoffatoms zu Nutze – und zwar die Koordination mit zwei neutralen elektronenliefernden Gruppen. Die daraus resultierenden Spezies, die als Carbone (L1→C←L2) bekannt sind, waren als Kohlenstoffatomquellen bisher kaum erforscht. Die Herausforderungen bei der Nutzung von Carbonen als Kohlenstoffatomquellen brachten die Forscher dazu, ein Reagenz zu entwickeln, bei dem ein Kohlenstoffatom von zwei einfachen und labilen Gruppen (PPh3 und N2) flankiert wird. In Science beschreiben sie die Synthese des kristallinen und isolierbaren Reagenz Ph3P=C=N2 durch eine formale PPh3/N2-Austauschreaktion unter Verwendung von Carbodiphosphoran Ph3P=C=PPh3 und Distickstoffoxid (N2O). Dieser synthetische Zugang ist sehr einfach und elegant, da keine Azide benötigt werden, was bei Diazoverbindungen typischerweise der Fall ist und ein Sicherheitsrisiko im Syntheseprozess darstellt. Prof. Hansmann und seine Mit­ar­bei­ter konnten zeigen, dass dieses Reagenz ohne weitere Zusätze als hochselektives Transferreagenz für Fragmente vom Kohlenstoffatom dient. Ph3PC-Transfers auf Ambiphile führen zu phosphorylidterminierten Heterocumulenen, CN2-Transfers auf Alkene zu mehrfach substituierten Pyrazolen. Bei der Reaktion mit Carbonylverbindungen findet schließlich ein Kohlenstoff-Atom-Transfer statt, der entweder zu verschiedenen Alkinen oder Butatrienen führt.

Zur Pub­li­ka­tion: https://www.science.org/doi/10.1126/science.ado4564

Ansprechpartner für Rückfragen:
Prof. Dr. Max Martin Hansmann
E-Mail: max.hansmanntu-dortmundde