To content

Publications and Patents

ISI profile (query: Summerer D NOT Summerer, Drew)

PubMed profile

 

2021

*: Corresponding Author, §: Equally Contributed

84. J. Wolffgramm, B. Buchmuller, S. Palei, Á. Muñoz-López, J. Kanne, P. Janning, M. R. Schweiger* and D. Summerer*
Light-Activation of DNA-Methyltransferases
Angew. Chem., 2021, in press.

83. J. Kanne§, M. Hussong§, J. Isensee, A. Muñoz-López, J. Wolffgramm, F. Heß, C. Grimm, S. Bessonov, L. Meder, J. Wang, H. C. Reinhardt, M. Odenthal, T. Hucho, R. Büttner, D. Summerer and M. R. Schweiger*
Pericentromeric satellite III transcripts induce etoposide resistance
Cell Death & Disease, 2021, in press.

82. B. Buchmuller, A. Jung, A. Munoz-Lopez and D. Summerer*
Programmable Tools for the Targeted Analysis of Epigenetic DNA Modifications
Curr. Opin. Chem. Biol., 2021, in press.

81. B. Buchmuller, A. Munoz-Lopez, M. Giess and D. Summerer*
Design and application of DNA modification-specific transcription-activator-like effectors
Meth. Mol. Biol., 2021, 2198, 381-99, doi: 10.1007/978-1-0716-0876-0_29

2020

80. A. Witte, A. Munoz-Lopez, M. Metz, M. R. Schweiger, P. Janning and D. Summerer*
Encoded, Click-Reactive DNA-Binding Domains for Programmable Capture of Specific Chromatin Segments
Chem. Sci., 2020, 11, 46, 12506-11, doi: 10.1039/D0SC02707C

79 A. Munoz-Lopez, A. Jung, B. Buchmuller, J. Wolffgramm, S. Maurer, A. Witte and D. Summerer*
Engineered TALE Repeats for Enhanced Imaging-based Analysis of Cellular 5-Methylcytosine
ChemBioChem2020, doi: 10.1002/cbic.202000563.

78. S. Palei, B. Buchmuller, J. Wolffgramm, A. Munoz-Lopez, S. Jung, P. Czodrowski, D. Summerer*
Light-Activatable TET-Dioxygenases Reveal Dynamics of 5-Methylcytosine Oxidation and Transcriptome Reorganization
J. Am. Chem. Soc., 2020, 142, 7289-94. doi.org/10.1021/jacs.0c01193

77. B. Buchmuller, B. Kosel, D. Summerer*
Complete Profiling of Methyl-CpG-Binding Domains for Combinations of Cytosine Modifications at CpG Dinucleotides Reveals Differential Read-out in Normal and Rett-Associated States
Sci. Rep., 2020, 10 (1), 4053, doi: 10.1038/s41598-020-61030-1

76. A. Munoz-Lopez, B. Buchmuller, J. Wolffgramm, A. Jung, M. Hussong, J. Kanne, M. R. Schweiger* and D. Summerer*
Designer Receptors for Nucleotide Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging
Angew. Chem. Int. Ed., 2020, 59 (23), 8927-31.  doi.org/10.1002/anie.202001935

75. B. Buchmuller, D. Summerer
Method for determining 5-methylcytosine configurations in DNA
Patent Application, 2020, 19 220 082.2, filed by the TU Dort­mund.

74. P. Widder, J. Schuck, D. Summerer* and M. Drescher*
Combining site-directed spin labeling in vivo and in-cell EPR Distance Determination
Phys. Chem. Chem. Phys., 2020, 22, 4875-9, doi: 10.1039/c9cp05584c

2019

73. T. Braun, P. Widder, U. Osswald, L. Groß, L. Williams, M. J. Schmidt, I. Helmle, D. Summerer* and Malte Drescher*
Isoindoline-Based Nitroxides as Bioresistant Spin Labels for Protein Labeling via Cysteines and Alkyne bearing Noncanonical Amino Acids 
ChemBioChem2019, doi: 10.1002/cbic.201900537.

72. M. Giess, A. Munoz-Lopez, B. Buchmuller, G. Kubik and D. Summerer*
Programmable Protein-DNA Crosslinking for the Direct Capture and Quantification of 5-Formylcytosine
J. Am. Chem. Soc., 2019, 141, 9453-7, doi: 10.1021/jacs.9b01432

71. P. Widder, F. Berner, D. Summerer* and M. Drescher*
Double Nitroxide Labeling by Copper-Catalyzed Azide-Alkyne Cycloadditions with Noncanonical Amino Acids for EPR Spectroscopy
ACS Chem. Biol.2019,14(5), 839-44, doi: 10.1021/acschembio.8b01111

70. A. Kugele, T. Braun, P. Widder, L. Williams, M. J. Schmidt, D. Summerer*, M. Drescher*
Site-Directed spin labelling of proteins by Suzuki-Miyaura coupling via a genetically encoded aryliodide amino acid
Chem. Commun., 2019, 55(13), 1923-1926, doi: 10.1039/c8cc09325c

69. T. Braun, M. Drescher* and D. Summerer*
Expanding the genetic code for site-directed spin-labeling
Int. J. Mol. Sci. ., 2019, 9, 20(2), E373, doi: 10.3390/ijms20020373
(Special Issue on “Expanding and Reprogramming the Genetic Code”, edited by K. Sakamoto).

2018

68. S. Maurer, B. Buchmuller, C. Ehrt, J. Jasper, O. Koch and D. Summerer*
Overcoming conservation in TALE-DNA interactions: A minimal repeat scaffold enables selective rerognition of an oxidized 5-methylcytosine
Chem. Sci., 2018, 9, 7247-52, doi: 10.1039/c8sc01958d

67. M. Gieß, A. Witte, J. Jasper, O. Koch and D. Summerer*
Complete, programmable decoding of oxidized 5-methylcytosine nucleobases in DNA by chemoselective blockage of universal transcription-activator-like effector repeats
J. Am. Chem. Soc., 2018, 140, 5904-8, doi: 10.1021/jacs.8b02909

66. H. Neumann*, P. Neumann-Staubitz, A. Witte and D. Summerer*
Epigenetic chromatin modification by amber suppression technology
Curr. Opin. Chem. Biol.2018, 45, 1-9, doi: 10.1016/j.cbpa.2018.01.017

65. M. J. Schmidt, and D. Summerer*
Directed evolution of orthogonal pyrrolysyl-tRNA synthetases in Escherichia coli for the genetic encoding of noncanonical amino acids
Meth. Mol. Biol.2018, 1728, 97-111, doi: 10.1007/978-1-4939-7574-7_5

64. A. Munoz-Lopez and D. Summerer*
Recognition of oxidized 5-methylcytosine derivatives in DNA by natural and engineered protein scaffolds
Chem. Rec.2018, 18(1), 105-16, doi: 10.1002/tcr.201700088

63. P. Rathi, S. Maurer and D. Summerer*
Selective recognition of N4-methylcytosine in DNA by engineered transcription-activator-like effectors
Philos. Trans. R. Soc. Lond. B Biol. Sci.2018, 373, 1748, doi: 10.1098/rstb.2017.0078
(Special Issue on “‘Frontiers in Epigenetic Chemical Biology”).

2017

62. P. Rathi, A. Witte and D. Summerer*
Engineering DNA backbone interactions results in TALE scaffolds with enhanced 5-methylcytosine selectivity
Sci. Rep.2017, 7, 15067, doi: 10.1038/s41598-017-15361-1

61. S. Flade, J. Jasper, M. Giess, M. Juhasz, A. Dankers, G. Kubik, O. Koch*, E. Weinhold* and D. Summerer*
The N6-position of adenine is a blind spot for TAL-effectors that enables effective binding of methylated and fluorophore-labeled DNA
ACS Chem. Biol., 2017, 12 (7), 1719-25, doi: 10.1021/acschembio.7b00324

2016

60. S. Maurer, M. Giess, O. Koch and D. Summerer*
Interrogating key positions of size-reduced TALE-repeats reveals a programmable sensor of 5-carboxylcytosine
ACS Chem. Biol., 2016,11 (12), 3294-9, doi: 10.1021/acschembio.6b00627

59. Y. J. Lee, M. J. Schmidt, J. M. Tharp, A. Weber, J. Gao, M. L. Waters, D. Summerer* and W. R. Liu*
Genetically encoded fluorophenylalanines enable insights into the recognition of lysine trimethylation by an epigenetic reader
Chem. Commun., 2016, 52 (85), 12606-9, doi: 10.1039/c6cc05959g

58. P. Rathi, S. Maurer, G. Kubik and D. Summerer*
Isolation of human genomic DNA sequences with expanded nucleobase selectivity
J. Am. Chem. Soc., 2016,138, 9910-18, doi: 10.1021/jacs.6b04807

57. P. Roser, M. J. Schmidt, M. Drescher* and D. Summerer*
Site-directed spin labeling of proteins for distance measurements in vitro and in cells
Org. Biomol. Chem., 2016,14, 5468-76, doi: 10.1039/c6ob00473c

56.G. Kubik and D. Summerer*
TALEored epigenetics: A DNA-binding scaffold for programmable epigenome editing and analysis
ChemBioChem., 2016,17, 975-80, doi: 10.1002/cbic.201600072

55. D. Summerer*, M. Giess, S. Maurer, G. Kubik
Transcription activator-like effector (TALE)-based decoding of cytosine nucleobases by selective modification response
Patent application., 2016, filed by the Uni­ver­sity of Konstanz.

2015

54. M. J. Schmidt, A. Fedoseev, D. Bücker, J. Borbas, C. Peter, M. Drescher* and D. Summerer*
EPR Distance measurements in native proteins with genetically encoded spin labels
ACS Chem. Biol., 2015, 18, 2764-71, doi: 10.1021/acschembio.5b00512

53. D. Summerer*
N6-Methyladenine: A potential epigenetic mark in eukaryotic genomes
Angew. Chem. Int. Ed., 2015, 54, 10714-6, doi: 10.1002/anie.201504594

52. M. J. Schmidt, A. Fedoseev, D. Summerer* and M. Drescher*
Genetically encoded spin labels for in vitro and in-cell EPR studies of native proteins
Methods Enzymol., 2015, 563, 483-502, doi: 10.1016/bs.mie.2015.05.023

51. G. Kubik and D. Summerer*
Deciphering epigenetic cytosine mod­i­fi­ca­tions by direct molecular recognition
ACS Chem. Biol., 2015, 10, 1580-9, doi: 10.1021/acschembio.5b00158

50. G. Kubik, S. Batke and D. Summerer*
Programmable sensors of 5-hydroxymethylcytosine
J. Am. Chem. Soc., 2015, 137, 2-5, doi: 10.1021/ja506022t

49. G. Kubik and D. Summerer*
Achieving single nucleotide resolution of 5-methylcytosine detection with TALEs
ChemBioChem., 2015, 16, 228-31, doi: 10.1002/cbic.201402408

48. B. Klauser, C. Rehm, D. Summerer and J. S. Hartig
Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomycesc erevisiae
Methods Enzymol., 2015, 550, 301-20, doi: 10.1016/bs.mie.2014.10.037

47. D. Summerer, M. J. Schmidt, M. Drescher
Genetically encoded spin label
Patent application, 2015, PCT/EP2015/050568, filed by the Uni­ver­sity of Konstanz

2014

46. M. Pott, M. J. Schmidt and D. Summerer*
Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids
ACS Chem. Biol., 2014, 9, 2815-22, doi: 10.1021/cb5006273

45. G. Kubik, M. J. Schmidt, J. E. Penner and D. Summerer*
Programmable and highly resolved in vitro detection of genomic 5-methylcytosine by TALEs
Angew. Chem. Int. Ed., 2014, 53, 6002-6, doi: 10.1002/anie.201400436

44. M. J. Schmidt, A. Weber, M. Pott, W. Welte and D. Summerer*
Structural basis of furan-amino acid recognition by a polyspecific aminoacyl-tRNA-synthetase and its genetic encoding in human cells
ChemBioChem, 2014, 15, 1755-60, doi: 10.1002/cbic.201402006

43. M. J. Schmidt and D. Summerer*
Genetic code expansion as a tool to study regulatory processes of transcription
Front. Chem., 2014, 2 (7), 1-11, doi: 10.3389/fchem.2014.00007

42. M. J. Schmidt, J. Borbas, M. Drescher* and D. Summerer*
A genetically encoded spin label for electron paramagnetic resonance distance measurements
J. Am. Chem. Soc., 2014, 136, 1238-41, doi: 10.1021/ja411535q
Three times highlighted by Faculty of 1000 (in­clu­ding rating: “exceptional”)

41. D. Summerer, M. J. Schmidt
Intercalating amino acids
Patent application, 2014, PCT/EP2014/065601, filed by the Uni­ver­sity of Konstanz

40. D. Summerer, G. Kubik, M. J. Schmidt
Direct, programmable detection of epigenetic cytosine mod­i­fi­ca­tions using TAL effectors
Patent application, 2014, PCT/EP2014/001753, filed by the Uni­ver­sity of Konstanz

2013

39. M. J. Schmidt, D. Summerer*
Red-light-con­trolled protein-RNA crosslinking with a genetically encoded furan
Angew. Chem. Int. Ed., 2013, 52, 4690-93, doi: 10.1002/anie.201300754

2012

38. M. J. Schmidt, D. Summerer*
A need for speed: genetic encoding of rapid cycloaddition chemistries for protein labelling in living cells
ChemBioChem, 2012, 13, 1553-57, doi: 10.1002/cbic.201200321

PI, Biotech Industry (Epigenetics, Genomics/Transcriptomics)

37. D. Summerer*
High-throughput DNA sequencing beyond the four-letter code: epigenetic mod­i­fi­ca­tions revealed by single molecule bypass kinetics
ChemBioChem, 2010, 11, 2499-501, doi: 10.1002/cbic.201000569

36. D. Summerer*, D. Hevroni, A. Jain, O. Scheck, J. Parker, A. Caruso, P.F. Stähler, C.F. Stähler and M. Beier
A flexible and fully integrated system for amplification, detection and genotyping of genomic DNA targets based on microfluidic oligonucleotide arrays
N. Biotechnology, 2010, 27, 149-55, doi: 10.1016/j.nbt.2010.03.005

35. M. Beier, P. F. Stähler, C.F. Stähler, J. Leonhard, D. Summerer, S. Bau
Process for the investigation of nucleic acid populations
Patent application, 2010, DE102008061772A1, filed by febit holding gmbh

34. D. Summerer*, N. Schracke, H. Wu, Y. Cheng, S. Bau, C.F. Stähler, P.F. Stähler and M. Beier
Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform
Genomics, 2010, 95, 241-6, doi: 10.1016/j.ygeno.2010.01.006

33. C.F. Stähler, P.F. Stähler, M. Beier, D. Summerer
Integrated amplification, processing and analysis of biomolecules in a microfluidic reaction medium
Patent application, 2010, WO2010043418, filed by febit holding gmbh

32. D. Summerer*
Enabling technologies of genomic-scale sequence enrichment for high throughput sequencing
Genomics, 2009, 94, 363-8, doi: 10.1016/j.ygeno.2009.08.012

31. N. Schracke, M. Kränzle, P. F. Stähler, D. Summerer and M. Beier
Specific sequence selection and next gen­era­tion resequencing of 68 E. coli genes using HybSelect
N. Biotechnology, 2009, 26, 229-33, doi: 10.1016/j.nbt.2009.08.013

30. D. Summerer*, H. Wu, B. Haase, Y. Cheng, N. Schracke, C.F. Stähler, M.S. Chee, P.F. Stähler and M. Beier
Microarray-based multicycle-enrichment of genomic subsets for targeted next-gen­era­tion sequencing
Genome Res., 2009, 19, 1616-21, doi: 10.1101/gr.091942.109
Described methodology was highlighted in the Faculty of 1000s magazine The Scientist: “The ten most exciting tools to hit the life sciences in 2009″

29. S. Bau, N. Schracke, M. Kränzle, H. Wu, J. D. Hoheisel, P. F. Stähler, M. Beier and D. Summerer*
Targeted next-gen­era­tion-sequencing by specific capture of multiple genomic loci using microfluidic low-volume DNA arrays
Anal. Bioanal. Chem., 2009, 393, 171-5, doi: 10.1007/s00216-008-2460-7

28. C.F. Stähler, P.F. Stähler, M. Beier, S. Bau, D. Summerer
Flexible extraction method for the production of sequence-specific molecule libraries
Patent application, 2009, WO2009065620, filed by febit holding gmbh

27. C.F. Stähler, P.F. Stähler, M. Beier, D. Summerer, M. Matzas, S. Vorwerk
Improved molecular biological processing system
Patent application, 2008, WO2008080629, filed by febit holding gmbh

Postdoc, The Scripps Research In­sti­tute (Chemical Biology, Genetic Code Expansion)

26. D.H. Jones, S.E. Cellitti, X. Hao, Q. Zhang, M. Jahnz, D. Summerer, P.G. Schultz, T. Uno, B.H. Geierstanger
Site-specific labeling of proteins with NMR-active unnatural amino acids
J. Biomol. NMR, 2010, 46, 89-100, doi: 10.1007/s10858-009-9365-4

25. E.M. Tippmann, W. Liu, D. Summerer, Mack A.V. and P.G. Schultz
A genetically encoded diazirine photocrosslinker in Escherichia Coli
ChemBioChem, 2007, 8, 2210-4, doi: 10.1002/cbic.200700460

24. E.A. Lemke§, D. Summerer§, B.H. Geierstanger, S.M. Brittain and P.G. Schultz
Control of protein phosphorylation with a genetically encoded photocaged amino acid
Nature Chem. Biol., 2007, 3, 769-72, doi: 10.1038/nchembio.2007.44
Faculty of 1000 evaluation: factor 10, exceptional.
Highlighted in Analytical Chem­is­try, January 1, 2008, “Photocaged amino acids enable sci­en­tists to study phosphorylation in vivo“
Highlighted by Arnaud, CH, Chemical & Engineering News, 2007, October 31, “Modified Serine Controls Protein Phosphorylation”
Highlighted by Richards, NGJ, The HFSP Journal, 2008, 2(2), 57-60 “Shining a light on posttranslational modification”

23. D. Summerer, S. Chen, N. Wu, A. Deiters, J.W. Chin and P.G. Schultz
A genetically encoded, fluorescent amino acid
Proc. Nat. Acad. Sci. USA, 2006, 103, 9785-9, doi: 10.1073/pnas.0603965103
Faculty of 1000 evaluation: factor 8, must read

22. Peter G. Schultz, Alexander Deiters, Lital Alfonta, Jonathan R. Chittuluru, Dan Groff, Daniel Summerer, Meng-Lin Tsao, Jiangyun Wang, Ning Wu, Jianming Xie and Huaqiang Zeng
Orthogonal translation components for the in vivo incorporation of unnatural amino acids
Patent application, 2006, WO2006110182, filed by the Scripps Research In­sti­tute, licensed to Novartis.

21. M.L. Tsao, D. Summerer, P.G. Schultz
The genetic incorporation of a distance probe into proteins in Escherichia coli
J. Am. Chem. Soc., 2006, 128, 4572-3, doi: 10.1021/ja058262u

20. A. Deiters, T.A. Cropp, D. Summerer, M. Mukherji, P.G. Schultz
Site-specific PEGylation of proteins containing unnatural amino acids
Bioorg. Med. Chem. Lett. 2004, 14, 5743-5, doi: 10.1016/j.bmcl.2004.09.059

PhD, Uni­ver­sity of Bonn (Chemical Biology, DNA Replication)

19. D. Summerer*
DNA polymerase profiling
Meth. Mol. Biol., 2008, 225, doi: 10.1007/978-1-60327-040-3_16

18. D. Summerer, N.Z. Rudinger, I. Detmer, A. Marx
Enhanced fidelity of mismatch extension by DNA polymerase through directed combinatorial enzyme de­sign
Angew. Chem. Int. Ed., 2005, 44, 4712-5, doi: 10.1002/anie.200500047

17. D. Summerer, A. Marx
4´-C-Ethynylthymidine acts as a chain terminator during DNA-synthesis catalyzed by HIV-1 reverse transcriptase
Bioorg. Med. Chem. Lett., 2005, 15, 869-71, doi: 10.1016/j.bmcl.2004.12.072

16. A. Marx, Nikolas Z. Rudinger, D. Summerer
Mutated DNA Polymerases with increased mispairing discrimination
Patent application, 2005, WO2005074350, filed by the Uni­ver­sity of Bonn, licensed to Qiagen.

15. A. Marx, D. Summerer
Bigger DNA: New genetic helix with expanded size
Angew. Chem. Int. Ed., 2004, 43, 1625-6, doi: 10.1002/anie.200301737

14. M. Strerath, J. Gaster, D. Summerer, A. Marx
Increased single-nucleotide discrimination of PCR by primer probes bearing hydrophobic 4’-C-mod­i­fi­ca­tions
ChemBioChem, 2004, 5, 333-9, doi: 10.1002/cbic.200300757

13. A. Marx, D. Summerer, M. Strerath
Selectivity of DNA replication
Highlights in Bioorganic Chem­is­try: Methods and Application, Editors: C. Schmuck, H. Wennemers, WILEY-VCH, 2004, 299-308

12. A. Marx, I. Detmer, J. Gaster, D. Summerer
Probing DNA polymerase function with synthetic tools
Synthesis, 2004, 1, 1-14, doi: 10.1055/s-2003-44363

11. D. Summerer and A. Marx
4′-C-Modified nucleotides as chemical tools for investigation and modulation of DNA polymerase function
Synlett, 2004, 2, 217-24

10. A. Marx, M. Strerath, D. Summerer, A. Pingoud, B. Tews, M. Hahn, P. Friedhoff, J. Wilhelm
Improved method for allele-specific PCR
Patent application, 2003, WO2003072814, filed by Roche Diagnostics gmbh / Hoffmann La Roche

9. B. Tews, J. Wilhelm, D. Summerer, M. Strerath, A. Marx, P. Friedhoff, A. Pingoud, M. Hahn
Application of the C4´-alkylated deoxyribose primer system (CAPS) in allele specific real-time PCR for increased selectivity in discrimination of single nucleotide sequence variants
Biol. Chem. 2003, 384, 1533-41, doi: 10.1515/BC.2003.170

8. I. Detmer, D. Summerer, A. Marx
Substrates for investigation of DNA polymerase function: Synthesis and properties of 4’-C-alkylated oligonucleotides
Eur. J. Org. Chem. 2003, 10, 1837-46, doi: 10.1002/ejoc.200200641

7. I. Detmer, D. Summerer, A. Marx
DNA minor groove hydration probed with 4’-alkylated thymidines
Chem. Commun. 2002, 20, 2314-5, doi: 10.1039/b207582m

6. D. Summerer, A. Marx
A molecular beacon for quantitative monitoring of the DNA polymerase reaction in real-time
Angew. Chem. Int. Ed. 2002, 41, 3620-2, doi: 10.1002/1521-3773(20021004)41:19<3620::AID-ANIE3620>3.0.CO;2-C

5. M. Strerath, D. Summerer, A. Marx
Varied DNA polymerase-substrate interactions in the nucleotide binding pocket
ChemBioChem 2002, 3, 578-80, doi: 10.1002/1439-7633(20020603)3:6<578::AID-CBIC578>3.0.CO;2-W

4. D. Summerer, A. Marx
Differential minor groove interactions between DNA polymerase and sugar backbone of primer and template strands
J. Am. Chem. Soc. 2002, 124, 910-1, doi: 10.1021/ja017244j

3. A. Marx, D. Summerer
Molecular insights into error-prone DNA replication and error-free lesion bypass
ChemBioChem 2002, 3, 405-8, doi: 10.1002/1439-7633(20020503)3:5<405::AID-CBIC405>3.0.CO;2-4
Highlighted by Faculty of 1000

2. D. Summerer, A. Marx
DNA-templated synthesis: More versatile than expected
Angew. Chem. Int. Ed. 2002, 41, 89-90, doi: 10.1002/1521-3773(20020104)41:1<89::AID-ANIE89>3.0.CO;2-G

1. D. Summerer, A. Marx
DNA polymerase selectivity: sugar interactions monitored with high fidelity nucleotides
Angew. Chem. Int. Ed. 2001, 40, 3693-5, doi: 10.1002/1521-3773(20011001)40:19<3693::aid-anie3693>3.0.co;2-o

Location & approach

The campus of TU Dort­mund Uni­ver­sity is located close to interstate junction Dort­mund West, where the Sauerlandlinie A 45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B 1 / A 40. The best interstate exit to take from A 45 is "Dort­mund-Eichlinghofen" (closer to Campus Süd), and from B 1 / A 40 "Dort­mund-Dorstfeld" (closer to Campus Nord). Signs for the uni­ver­si­ty are located at both exits. Also, there is a new exit before you pass over the B 1-bridge leading into Dort­mund.

To get from Campus Nord to Campus Süd by car, there is the connection via Vo­gel­pothsweg/Baroper Straße. We recommend you leave your car on one of the parking lots at Campus Nord and use the H-Bahn (suspended monorail system), which conveniently connects the two campuses.

TU Dort­mund Uni­ver­sity has its own train station ("Dort­mund Uni­ver­si­tät"). From there, suburban trains (S-Bahn) leave for Dort­mund main station ("Dort­mund Hauptbahnhof") and Düsseldorf main station via the "Düsseldorf Airport Train Station" (take S-Bahn number 1, which leaves every 20 or 30 minutes). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duisburg.

You can also take the bus or subway train from Dort­mund city to the uni­ver­si­ty: From Dort­mund main station, you can take any train bound for the Station "Stadtgarten", usually lines U41, U45, U 47 and U49. At "Stadtgarten" you switch trains and get on line U42 towards "Hombruch". Look out for the Station "An der Palmweide". From the bus stop just across the road, busses bound for TU Dort­mund Uni­ver­sity leave every ten minutes (445, 447 and 462). Another option is to take the subway routes U41, U45, U47 and U49 from Dort­mund main station to the stop "Dort­mund Kampstraße". From there, take U43 or U44 to the stop "Dort­mund Wittener Straße". Switch to bus line 447 and get off at "Dort­mund Uni­ver­si­tät S".

The H-Bahn is one of the hallmarks of TU Dort­mund Uni­ver­sity. There are two stations on Campus Nord. One ("Dort­mund Uni­ver­si­tät S") is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the "Technologiepark" and (via Campus Süd) Eichlinghofen. The other station is located at the dining hall at Campus Nord and offers a direct connection to Campus Süd every five minutes.

The AirportExpress is a fast and convenient means of transport from Dort­mund Airport (DTM) to Dort­mund Central Station, taking you there in little more than 20 minutes. From Dort­mund Central Station, you can continue to the uni­ver­si­ty campus by interurban railway (S-Bahn). A larger range of in­ter­na­tio­nal flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the uni­ver­si­ty station.

The facilities of TU Dort­mund Uni­ver­sity are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the uni­ver­si­ty are located in the adjacent "Technologiepark".

Site Map of TU Dort­mund Uni­ver­sity (Second Page in English).