To content
Professorship for Inorganic Chemistry

Prof. Dr. Sebastian Henke

Technische Universität Dortmund
Fakultät für Chemie und Chemische Biologie
Anorganische Chemie
Otto-Hahn-Str. 6
44227 Dortmund

Room: C2-05-331

E-Mail:
Phone: +49 231 755 3976
Fax: +49 231 755 5048

Portrait Sebastian Henke © CCB​/​TU Dortmund

Welcome to our webpage. We are materials chemists working at the interface of solid-state and molecular chemistry. Our goal is to construct functional materials via a modular approach utilising Werner-type coordination chemistry. By self-assembly of inorganic and organic building units we synthesize extended (2D or 3D) coordination networks (or metal-organic frameworks, MOFs) with interesting chemical and physical properties (porosity, flexibility, disorder, etc.). Ultimately, we want to modulate the functional properties of our materials systematically by chemical principles.

Open Positions

Several exciting re­search topics are available for Bachelor and Master theses:

– Stimuli-responsive MOFs for gas separations and energy storage applications
– MOF glasses for applications as membranes and solid electrolytes

Please contact Sebastian Henke by email if interested.

 

News

Jan-Benedikt Weiß visits Oxford University for three months

As part of the research for his Master thesis, Jan-Benedikt Weiß is visiting the world-renowned group of Prof. Andrew Goodwin at the Inorganic Chemistry Laboratory of the University of Oxford. For three months, Jan learns new skills for modelling disordered and glassy framework materials based on X-ray total scattering data. While at Oxford, Jan will also visit the synchrotron radiation facility Diamond Light Source to collect high-quality X-ray total scattering data from his glassy MOF samples. We are very grateful to Andrew Goodwin and his group for their outstanding hospitality. Jan would also like to thank SCHOTT for sponsoring this project with a scholarship from the Heinrich J. Klein Foundation.


First PhD from the group completed

Louis Frentzel-Beyme successfully defended his doctoral thesis. This is a milestone for the Henke group, as it is the group's first doctoral degree. Louis' dissertation, entitled "Towards Processable Metal-Organic Frameworks - Porous Glasses and Water-Processable Materials," provides new insights, particularly in the emerging field of MOF glasses. One of his breakthroughs is the development of a linker exchange strategy that allows systematic tuning of the melting point of MOF crystals as well as the glass transition point of the corresponding glasses.

In addition, Louis has gained fundamental insights into the porosity of MOF glasses and demonstrated their potential for gas separation applications. Check out Louis' publications for a deeper dive into the subject:

L. Frentzel-Beyme, M. Kloß, R. Pallach, S. Salamon, H. Moldenhauer, J. Landers, H. Wende, J. Debus, S. Henke
J. Mater. Chem. A 2019, 7, 985
DOI: 10.1039/C8TA08016J

L. Frentzel-Beyme, M. Kloss, P. Kolodzeiski, R. Pallach, S. Henke
J. Am. Chem. Soc. 2019, 141, 12362
DOI: 10.1021/jacs.9b05558

L. Frentzel-Beyme, P. Kolodzeiski, J.-B. Weiß, S. Henke
Preprint on ChemRxiv, 2022
DOI: 10.26434/chemrxiv-2021-lq308


Fine-tuning the mechanics of responsive MOFs

Jianbo’s paper on the high-pressure phase behaviour of flexible zeolitic imidazolate frameworks (ZIFs) has just been published in Angewandte Chemie.

Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution
J. Song, R. Pallach, L. Frentzel-Beyme, P. Kolodzeiski, G. Kieslich, P. Vervoorts, C. L. Hobday, S. Henke, Angew. Chem. Int. Ed. 2022, e202117565

Sophisticated high-pressure powder X-ray diffraction experiments, which have been performed at the synchrotron radiation source Diamond Light Source (UK), shed light on the unusual high-pressure response of a series of porous ZIFs. The open framework structures reversibly transform to a closed framework under application of mechanical pressure. Interestingly, the pressure driven phase transformation can be switched from discontinuous to continuous by partially substituting the small imidazolate building units by larger benzimidazolate units. The continuous transition from the fully open to the closed structure allows precise modulation of the materials pore size by application of mechanical pressure to the material. This finding is of relevance for the utilization of such flexible framework materials in gas separation membranes, shock absorbers and nanoscopic actuators.


Gateway Fellowship for Louis Frentzel-Beyme

Portrait Louis Frentzel-Beyme © Ralf Maserski​/​TU Dortmund

Louis has been awarded with the Gateway Fellowship for post-doctoral researchers of the COORNETs DFG Priority Program 1928. During the one-year financial support, Louis will continue his research in the emerging field of MOF glasses. Here, he aims to develop new functionalized MOF glass composites for potential applications in e.g. gas separation or optics. The integration in the interdisciplinary COORNETs program, which includes many renowed research groups in Germany, is an excellent opportunity to take the first steps towards an independent scientific career. Congratulations and we are happy to have you in the group for another year!


Sebastian Henke receives TU Dortmund Teaching Price 2021 together with Prof. Andreas Steffen

Sebastian Henke and Andreas Steffen have been awarded the Teaching Price of TU Dortmund University in the category 1 (courses with more than 60 participants) for their great commitment to the first-semester lecture "General and Inorganic Chemistry (AC1)" in winter semester 2020/21. Please see the website of the Annual Academic Celebration (Akademische Jahresfeier) of TU Dortmund University for more details (in German).


Squeezing responsive MOFs under high pressure

In collaboration with the group of Prof. Stephen Moggach from the University of Western Australia (Perth) and an international team we studied how guest-responsive MOFs behave when exposed to mechanical pressures up to 2.1 GPa (that is approx. 21,000 times the atmospheric pressure). The study has been published in the journal Chemical Science.

Guest-Mediated Phase Transitions in a Flexible Pillared-Layered Metal-Organic Framework under High-Pressure
G. Turner, S. C. McKellar, D. R. Allan, A. K. Cheetham, S. Henke*, S. A. Moggach*
Chem. Sci. 2021, 12, 13793-13801

We performed single crystal X-ray diffraction experiments on a responsive MOF using a diamond anvil cell for the high pressure environment. The MOF shows a drastically different mechanical phase behaviour and distinct network distortions depending on the type of guest molecule in its pores. Our results demonstrate the large influence of guest molecules on the high-pressure phase behavior of responsive MOFs. Guest-mediated framework flexibility is useful to engineering MOFs with bespoke pore shapes and compressibility.


New paper published in Nature Communications: Frustrated flexibility in metal-organic frameworks

Grafic Illustration © AK-Henke​/​TU Dortmund

Roman's paper on the unusual structural responsiveness of alkoxy-functionalized MOF-5 derivatives is now published in Nature Communications.

Frustrated flexibility in metal-organic frameworks
R. Pallach, J. Keupp, K. Terlinden, L. Frentzel-Beyme, M. Kloß, A. Machalica, J. Kotschy, S. K. Vasa, P. A. Chater, C. Sternemann, M. T. Wharmby, R. Linser, R. Schmid, S. Henke
Nat. Commun. 2021, 12, 4097

We report a strategy to create MOFs with a ‘frustrated’ structure arising from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the framework’s inorganic building units. Mediated by guest exchange or temperature changes, the frustrated MOFs undergo reversible loss and recovery of crystalline order while preserving framework connectivity and topology. Some of these frustrated MOFs own unprecedented physical properties, such as continuous non-crystalline-to-crystalline transitions driven by entropy rather than enthalpy. The novel phenomenon of frustrated flexibility has consequences for the application of MOFs in gas storage, separation, and catalysis, and further suggests great potential for the discovery of new responsive materials exhibiting unconventional and exotic properties.


Awards for Kai Terlinden and Pascal Kolodzeiski

Kai Terlinden and Pascal Kolodzeiski

At the (virtual) 14th Day of Chemistry the best graduates of the Department CCB of the past year were honoured. Congratulations to our students Kai Terlinden and Pascal Kolodzeiski for receiving the award for their outstanding master's degrees. In his Master's thesis, Kai developed an isoreticular series of novel alkali ion based porous framework compounds, which can be processed from ethanolic solution. Pascal used sophisticated in situ X-ray diffraction and scattering techniques to look into the mechanical and thermal behaviour of various prototypical MOFs. We are very pleased that Kai and Pascal stay in the group for their doctorate.


Sebastian Henke appointed to the rank of Professor

From left to right: Prof. Stefan Kast (Dean of the Department CCB), Prof. Sebastian Henke, Prof. Manfred Bayer (Rector of TU Dortmund University).

Sebastian has been appointed to a new professorship in the field of Inorganic Chemistry. With this new role the Henke Group will continue to grow and to tackle eminent questions in the materials chemistry of coordination networks and metal-organic frameworks (MOFs). This success would not have been possible without the hard and dedicated work of our excellent PhD, Master and Bachelor students, as well as the outstanding postdocs, who have been working in our group over the past four years. A big “Thank You!” goes to all current and former group members and all colleagues in the Department CCB!


Kekulé Fellowship for Pascal Kolodzeiski

Logo Fond der Chemischen Industrie © FCI

Pascal Kolodzeiski receives a prestigious Kekulé fellowship of the "Fonds der Chemischen Industrie" (FCI) to support his doctoral research project on MOF glasses in our group. We are very proud that Pascal passed the rigorous selection process and thank the FCI for its generous funding. Building on his outstanding Master's thesis in 2020 (see below), Pascal is now looking into designing new functional MOF glasses for applications as solid electrolytes and membrane materials.


Pascal Kolodzeiski receives the "best of the year award" of the Department CCB

Portrait Pascal Kolodzeiski © AK-Henke​/​TU Dortmund

Big congratulations to Pascal, who received the best of year award of the Department CCB for his excellent master’s degree in 2020. In his master’s thesis, entitled "Investigations on the structural behaviour of carboxylate- and imidazolate-based metal-organic frameworks under mechanical pressure and high temperature", Pascal studied the mechanical and thermal response of a number of prototypical MOFs with in situ X-ray diffraction and scattering techniques. Parts of this work were performed at DELTA, the synchrotron radiation facility of TU Dortmund. We are very happy that Pascal decided to stay with us and study towards a PhD in our lab.


Exploration Grant of the Boehringer Ingelheim Foundation to investigate the ionic conductivity of MOF glasses

Logo Boehringer-Ingelheim-Stiftung

The Boehringer Ingelheim Foundation funds our project to study the ionic conductivity of MOF glasses. MOF glasses are a new class of nanoporous solids that can be processed in their liquid state, which is a conceptual advantage over the classical crystalline solid electrolytes. For this project we are looking for a talented electrochemist with profound experience in electrochemical impedance spectroscopy (postdoc level) to join our group. Please see the job ad. Applications of interested candidates can be send by email to Sebastian Henke.


Experiment! – New grant from the Volkswagen Foundation to explore porous liquids

Logo Volkswagen-Stiftung

The Volkswagen Foundation approved our grant in the frame of the funding program "Experiment!”  In this explorative project, we will investigate the gas sorption behaviour of porous liquids based on colloidal metal-organic framework (MOF) suspensions. For this purpose, we are seeking a highly motivated and talented postdoc to join our group. If you are interested, please see the job ad

 


Chiral Glow - DFG funds our joint research project with the Steffen Group

Grafikiillustration © AK-Henke​/​TU Dortmund

Within the frame of the DFG priority programme 1928 COORNETs (Coordination Networks: Building Blocks for Functional Systems) we received funding for an exciting collaborative project with the group of Prof. Andreas Steffen. The Steffen and Henke Groups will join forces to utilize specifically designed MOFs as host matrices for chiral organometallic Cu(I) complexes. These chiral compounds can exhibit circularly polarized luminescence (CPL) with a yet to fully explore potential in enantioselective sensors, data storage, (3D-)OLEDs, or ultrafast switching in quantum cryptographical applications. We will follow a specific design strategy to obtain beneficial CPL properties in single crystals, powders and films, and finally employ these new materials in CP-PhOLEDs (circularly polarized phosphorescent organic light-emitting diodes).


EuroMOF 2019 in Paris

Louis Frenzel-Beyme, Pascak Kolodzeiski, Roman Pallach © AK-Henke​/​TU Dortmund

Louis, Pascal and Roman presented their work on porous sodium organic salts, flexible frameworks and MOF glasses at "EuroMOF 2019 - The 3rd International Conference on Metal Organic Frameworks and Porous Polymers" in Paris. We thank the DFG priority programme 1928 "COORNETs" and the Gesellschaft Deutscher Chemiker e.V. for their generous support.


Paper Published in JACS: Porous Metal Imidazolate Glasses Can Separate Hydrocarbons

Grafikillustration © AK-Henke​/​TU Dortmund

Louis’ paper on zeolitic imidazolate framework (ZIF) glasses has just been accepted for publication by JACS. 

Meltable Mixed-Linker Zeolitic Imidazolate Frameworks and Their Microporous Glasses - From Melting Point Engineering to Selective Hydrocarbon Sorption
L. Frentzel-Beyme, M. Kloss, P. Kolodzeiski, R. Pallach, S. Henke*
J. Am. Chem. Soc. 2019, DOI: 10.1021/jacs.9b05558.

We report a synthetic strategy for melting point engineering of crystalline ZIFs. Via a linker mixing approach the melting point of a prototypical ZIF material is decreased to only about 370 °C – a record low for these kind of materials. This sets the stage for the development of lower temperature processing techniques for porous ZIF liquids and glasses. Melting the ZIF crystals followed by cooling the liquid to room temperature yields porous ZIF glasses, which feature pores large enough to adsorb various hydrocarbon gases. Importantly, kinetic sorption profiles indicate that the glasses are able to separate propylene from propane; one of the most important separation problems of the chemical industry.


Spotlight on Elastic Porous Crystals

Logo Diamond Light Source

We are very happy that our Chemical Science Paper on the mechanical-pressure-driven open pore to closed pore phase transitions of a family of zeolitic imidazolate frameworks (ZIFs) has been highlighted in the Annual Review of Diamond Light Source. This work benefited a lot from the world class X-ray diffraction equipment available at beamline I15 of Diamond Light Source.

Annual Report

(see page 60 for our work)


Three Great Theses in 2018

Marvin Kloß, Sebastian Henke, Julia Kuhnt, Stefan Koop © AK-Henke​/​TU Dortmund

Julia Kuhnt, Marvin Kloß and Stefan Koop performed their Master‘s research projects in our group and successfully defended their theses in 2018. Topics covered range from metal-organic framework glasses and photo-switchable MOFs to hybrid inorganic-organic perovskites. Congratulations and all the best for your future research projects.


Purple, Paramagnetic, Porous - The First Cobalt Imidazolate Glass

Grafikillustration © AK-Henke​/​TU Dortmund

Louis' and Marvin's paper on a permanently porous cobalt-based zeolitic imidazolate framework glass has just been accepted for publication in the Journal of Materials Chemistry A.

"Porous purple glass - A cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework"
L. Frentzel-Beyme, M. Kloß, R. Pallach, S. Salamon, H. Moldenhauer, J. Landers, H. Wende, J. Debus, S. Henke*, J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA08016J.

MOF glasses represent a new class of functional materials which might have a number of advantages against their crystalline counterparts. We have developed the very first cobalt-based zeolitic imidazolate framework (ZIF) that can be melted and transformed into a glass. In collaboration with colleagues from the Physics Departments of TU Dortmund and the University of Duisburg-Essen, we investigated the structural, thermodynamic and magnetic properties of this new material. Importantly, the liquid and glass phases of the ZIF preserve almost 50% of the porosity of the crystalline parent material. This finding might pave the way for the application of liquid and glassy MOFs in gas separation processes and catalysis.


MOF 2018 in Auckland, New Zealand

Roman Pallach, Sebastian Henke, Louis Frentzel-Beyme © AK-Henke​/​TU Dortmund

Louis, Roman und Sebastian presented the freshest results from the group's research at the 6th International  Conference on Metal-Organic Frameworks & Open Framework Compounds ‘MOF 2018’ in Auckland, New Zealand. It has been a fantastic conference with lots of fascinating science, excellent talks and great people. We are looking forward to “EuroMOF 2019" in Paris next year and  ‘MOF 2020’ in Dresden in two years.


DAAD-Travel Grant for Louis Frentzel-Beyme

We are delighted that Louis received a travel grant from the German Academic Exchange Service (DAAD) to present his work on porous sodium-organic frameworks at the 6th International Conference on Metal-Organic Frameworks & Open Framework Compounds ‘MOF2018’ in Auckland, New Zealand, this year. Great job!.


Funding for Porous Salts

Greafikillustration © AK-Henke​/​TU Dortmund

Most MOFs are based on di-, tri- or tetravalent metal ions (e.g. Zn2+, Cu2+, Al3+, Zr4+ etc.). Porous frameworks composed of monovalent alkali ions (Li+, Na+, K+) linked by organic anions are rare, however. We are very happy that the DFG decided to fund our project on “Porous Alkali-Organic Frameworks - From Design towards Application”. First examples of these new materials, which can be regarded as porous alkali-organic salts (see Figure), will be reported soon.


Max-Buchner-Scholarship

Sebastian received a Max-Buchner-Scholarship from DECHEMA for a research project focussing on the utilisation of nanoparticles of flexible MOFs as functional additives for lubrication systems.


EXMAC

Logo Explore Materials Chain

We are part of the EXPLORE Materials Chain (EXMAC) project, which enables us to invite an international postdoc to our lab for two weeks (27 October – 14 November 2018).

Within this two-week stay, we will develop a joint research idea and prepare a dedicated proposal for the independent funding of the postdoc. If you are interested to visit our group and work on an exciting project of current materials chemistry please visit our profile on the EXMAC webpage.


Top Download

Our recent paper “Different Breathing Mechanisms in Flexible Pillared-Layered Metal-Organic Frameworks − Impact of the Metal Center”  is among the Top 20 most downloaded articles of Chemistry of Materials in March 2018. 


Paper published in Chemistry of Materials

Grafikillustration © AK-Henke​/​TU Dortmund

“Different Breathing Mechanisms in Flexible Pillared-Layered Metal-Organic Frameworks − Impact of the Metal Center”

A. Schneemann, P. Vervoorts, I. Hante, M. Tu, S. Wannapaiboon, C. Sternemann, M. Paulus, D. C. F. Wieland, S. Henke*, R. A. Fischer*, Chem. Mater. 2018, DOI: 10.1021/acs.chemmater.7b05052

Flexible metal-organic frameworks expand their extended network structure upon adsorption of gases. We reveal that the mechanism of structure expansion (the so called breathing) can be very different even in isostructural compounds possessing varying divalent metal ions M2+ (i.e. Co2+, Ni2+, Cu2+ or Zn2+). With the help of isothermal gas adsorption measurements and synchrotron X-ray diffraction studies, we revealed that flexible pillared-layered MOFs either switch between discrete phases (M2+ = Cu2+ or Zn2+) or undergo a continuous swelling followed by discontinuous switching (M2+ = Co2+ or Ni2+) upon adsorption of CO2 from the gas phase.


Paper published in Chemical Science

Grafikillustration © AK-Henke​/​TU Dortmund

“Pore closure in zeolitic imidazolate frameworks under mechanical pressure”

S. Henke*, M. T. Wharmby, G. Kieslich, I. Hante, A. Schneemann, Y. Wu, D. Daisenberger, A. K. Cheetham, Chem. Sci. 2018,9, 1654-1660

In collaboration with colleagues from Diamond Light Source, Cambridge, Munich and Bochum we discovered that zeolitic imidazolate frameworks of the cag topology reversibly switch between an open and a closed pore form in response to mechanical pressure.

Location & approach

The campus of TU Dort­mund University is located close to interstate junction Dort­mund West, where the Sauerlandlinie A 45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B 1 / A 40. The best interstate exit to take from A 45 is "Dort­mund-Eichlinghofen" (closer to Campus Süd), and from B 1 / A 40 "Dort­mund-Dorstfeld" (closer to Campus Nord). Signs for the uni­ver­si­ty are located at both exits. Also, there is a new exit before you pass over the B 1-bridge leading into Dort­mund.

To get from Campus Nord to Campus Süd by car, there is the connection via Vogelpothsweg/Baroper Straße. We recommend you leave your car on one of the parking lots at Campus Nord and use the H-Bahn (suspended monorail system), which conveniently connects the two campuses.

TU Dort­mund University has its own train station ("Dort­mund Uni­ver­si­tät"). From there, suburban trains (S-Bahn) leave for Dort­mund main station ("Dort­mund Hauptbahnhof") and Düsseldorf main station via the "Düsseldorf Airport Train Station" (take S-Bahn number 1, which leaves every 20 or 30 minutes). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duisburg.

You can also take the bus or subway train from Dort­mund city to the uni­ver­si­ty: From Dort­mund main station, you can take any train bound for the Station "Stadtgarten", usually lines U41, U45, U 47 and U49. At "Stadtgarten" you switch trains and get on line U42 towards "Hombruch". Look out for the Station "An der Palmweide". From the bus stop just across the road, busses bound for TU Dort­mund University leave every ten minutes (445, 447 and 462). Another option is to take the subway routes U41, U45, U47 and U49 from Dort­mund main station to the stop "Dort­mund Kampstraße". From there, take U43 or U44 to the stop "Dort­mund Wittener Straße". Switch to bus line 447 and get off at "Dort­mund Uni­ver­si­tät S".

The H-Bahn is one of the hallmarks of TU Dort­mund University. There are two stations on Campus Nord. One ("Dort­mund Uni­ver­si­tät S") is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the "Technologiepark" and (via Campus Süd) Eichlinghofen. The other station is located at the dining hall at Campus Nord and offers a direct connection to Campus Süd every five minutes.

The AirportExpress is a fast and convenient means of transport from Dortmund Airport (DTM) to Dortmund Central Station, taking you there in little more than 20 minutes. From Dortmund Central Station, you can continue to the university campus by interurban railway (S-Bahn). A larger range of international flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the university station.

The facilities of TU Dortmund University are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the university are located in the adjacent "Technologiepark".

Site Map of TU Dortmund University (Second Page in English).