Jump label

Service navigation

Main navigation

You are here:

Main content

Inorganic Chemistry

 

JProf. Dr. Sebastian Henke

 

Technische Universität Dortmund
Anorganische Chemie
Otto-Hahn-Str. 6
D-44227 Dortmund

Room: C2-07-176

Phone: +49 231 755 3976
Fax: +49 231 755 5048

 


Research Overview_v2_600

Welcome to our webpage. We are materials chemists working at the interface of solid-state and molecular chemistry. Our goal is to construct functional materials via a modular approach utilising Werner-type coordination chemistry. By self-assembly of inorganic and organic building units we synthesize extended (2D or 3D) coordination networks (or metal-organic frameworks, MOFs) with interesting chemical and physical properties (porosity, flexibility, disorder, etc.). Ultimately, we want to modulate the functional properties of our materials systematically by chemical principles.

 

Open Positions

Several exciting research topics in the area of flexible MOFs (gas sorption, temperature-driven phase transitions) are available for Bachelor and Master theses.
If interested, please contact Sebastian Henke by email.

 

News

 


Three Great Theses in 2018

n2019-01a

Julia Kuhnt, Marvin Kloß and Stefan Koop performed their Master‘s research projects in our group and successfully defended their theses in 2018. Topics covered range from metal-organic framework glasses and photo-switchable MOFs to hybrid inorganic-organic perovskites. Congratulations and all the best for your future research projects.

 


Purple, Paramagnetic, Porous - The First Cobalt Imidazolate Glass

n2018-12b

Louis' and Marvin's paper on a permanently porous cobalt-based zeolitic imidazolate framework glass has just been accepted for publication in the Journal of Materials Chemistry A:

"Porous purple glass - A cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework"
L. Frentzel-Beyme, M. Kloß, R. Pallach, S. Salamon, H. Moldenhauer, J. Landers, H. Wende, J. Debus, S. Henke*, J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA08016J.

MOF glasses represent a new class of functional materials which might have a number of advantages against their crystalline counterparts. We have developed the very first cobalt-based zeolitic imidazolate framework (ZIF) that can be melted and transformed into a glass. In collaboration with colleagues from the Physics Departments of TU Dortmund and the University of Duisburg-Essen, we investigated the structural, thermodynamic and magnetic properties of this new material. Importantly, the liquid and glass phases of the ZIF preserve almost 50% of the porosity of the crystalline parent material. This finding might pave the way for the application of liquid and glassy MOFs in gas separation processes and catalysis.

 


MOF 2018 in Auckland New Zealand

n2018-12

Louis, Roman und Sebastian presented the freshest results from the group's research at the 6th International  Conference on Metal-Organic Frameworks & Open Framework Compounds ‘MOF 2018’ in Auckland, New Zealand. It has been a fantastic conference with lots of fascinating science, excellent talks and great people. We are looking forward to “EuroMOF 2019" in Paris next year and  ‘MOF 2020’ in Dresden in two years.

 


DAAD-Travel Grant for Louis Frentzel-Beyme

N2018-06

We are delighted that Louis received a travel grant from the German Academic Exchange Service (DAAD) to present his work on porous sodium-organic frameworks at the 6th International Conference on Metal-Organic Frameworks & Open Framework Compounds ‘MOF2018’ in Auckland, New Zealand, this year. Great job!.

 


Funding for Porous Salts

n2018-05

Most MOFs are based on di-, tri- or tetravalent metal ions (e.g. Zn2+, Cu2+, Al3+, Zr4+ etc.). Porous frameworks composed of monovalent alkali ions (Li+, Na+, K+) linked by organic anions are rare, however. We are very happy that the DFG decided to fund our project on “Porous Alkali-Organic Frameworks - From Design towards Application”. First examples of these new materials, which can be regarded as porous alkali-organic salts (see Figure), will be reported soon.

 


Max-Buchner-Scholarship

n2018-04

Sebastian received a Max-Buchner-Scholarship from DECHEMA for a research project focussing on the utilisation of nanoparticles of flexible MOFs as functional additives for lubrication systems.

 


EXMAC

n2018-03We are part of the EXPLORE Materials Chain (EXMAC) project, which enables us to invite an international postdoc to our lab for two weeks (27 October – 14 November 2018). Within this two-week stay, we will develop a joint research idea and prepare a dedicated proposal for the independent funding of the postdoc. If you are interested to visit our group and work on an exciting project of current materials chemistry please visit our profile on the EXMAC webpage.


Top Download

Our recent paper “Different Breathing Mechanisms in Flexible Pillared-Layered Metal-Organic Frameworks − Impact of the Metal Center”  is among the Top 20 most downloaded articles of Chemistry of Materials in March 2018. 

 


Paper published in Chemistry of Materials

n2018-2“Different Breathing Mechanisms in Flexible Pillared-Layered Metal-Organic Frameworks − Impact of the Metal Center”

A. Schneemann, P. Vervoorts, I. Hante, M. Tu, S. Wannapaiboon, C. Sternemann, M. Paulus, D. C. F. Wieland, S. Henke*, R. A. Fischer*, Chem. Mater. 2018, DOI: 10.1021/acs.chemmater.7b05052

 Flexible metal-organic frameworks expand their extended network structure upon adsorption of gases. We reveal that the mechanism of structure expansion (the so called breathing) can be very different even in isostructural compounds possessing varying divalent metal ions M2+ (i.e. Co2+, Ni2+, Cu2+ or Zn2+). With the help of isothermal gas adsorption measurements and synchrotron X-ray diffraction studies, we revealed that flexible pillared-layered MOFs either switch between discrete phases (M2+ = Cu2+ or Zn2+) or undergo a continuous swelling followed by discontinuous switching (M2+ = Co2+ or Ni2+) upon adsorption of CO2 from the gas phase.

 


Paper published in Chemical Science

n2018-01“Pore closure in zeolitic imidazolate frameworks under mechanical pressure”

S. Henke*, M. T. Wharmby, G. Kieslich, I. Hante, A. Schneemann, Y. Wu, D. Daisenberger, A. K. Cheetham, Chem. Sci. 2018,9, 1654-1660

In collaboration with colleagues from Diamond Light Source, Cambridge, Munich and Bochum we discovered that zeolitic imidazolate frameworks of the cag topology reversibly switch between an open and a closed pore form in response to mechanical pressure.

 



Sub content

Funding

Logo_1

Logo_2

Logo_3

Logo_4

Logo_5